Программно технические средства обработки информации. Технические средства обработки информатизации

Лекция № 3

Основные вопросы лекции:

1. Технические средства информатики.

2. Понятие о принципах работы ЭВМ.

3. Основные компоненты персонального компьютера.

Технические средства информатики

ЭВМ - основное техническое средство обработки информации, классифицируемое по ряду признаков, в частности: по назначению, принципу действия , способам организации вычислительного процесса, размерам и вычислительной мощности, функциональным возможностям, способности к параллельному выполнению программ и др.

По назначению ЭВМ можно разделить на три группы:

· универсальные (общего назначения) - предназначены для решения самых разных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Характерными чертами этих ЭВМ являются высокая производительность, разнообразие форм обрабатываемых данных (двоичных, десятичных, символьных), разнообразие выполняемых операций (арифметических, логических, специальных), большая емкость оперативной памяти, развитая организация ввода-вывода информации;

· проблемно-ориентированные - предназначены для решение более узкого круга задач, связанных обычно с технологическими объектами, регистрацией, накоплением и обработкой небольших объемов данных (управляющие вычислительные комплексы);

· специализированные - для решения узкого круга задач, чтобы снизить сложность и стоимость этих ЭВМ, сохраняя высокую производительность и надежность работы (программируемые микропроцессоры специального назначения, контроллеры, выполняющие функции управления техническими устройствами).

По принципу действия (критерием деления вычислительных машин является форма представления информации, с которой они работают):

· аналоговые вычислительные машины (АВМ) - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной форме, т.е. виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения); в этом случае величина напряжения является аналогом значения некоторой измеряемой переменной. Например, ввод числа 19.42 при масштабе 0.1 эквивалентен подаче на вход напряжения в 1.942 В;

· цифровые вычислительные машины (ЦВМ) - вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее в цифровой, форме - в виде нескольких различных напряжений, эквивалентных числу единиц в представляемом значении переменной;

· гибридные вычислительные машины (ГВМ) - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме.

АВМ просты и удобны в эксплуатации; программирование задач для решения на них нетрудоемкое, скорость решения изменяется по желанию оператора (больше, чем у ЦВМ), но точность решения очень низкая (относительная погрешность 2-5 %). На АВМ решают математические задачи, содержащие дифференциальные уравнения, не содержащие сложной логики. ЦВМ получили наиболее широкое распространение, именно их подразумевают, когда говорят про ЭВМ. ГВМ целесообразно использовать для управления сложными быстродействующими техническими комплексами.

По поколениям можно выделить следующие группы:

1 поколение. В 1946г. была опубликована идея использования двоичной арифметики (Джон фон Нейман, А. Бернс) и принципа хранимой программы, активно использующиеся в ЭВМ 1 поколения. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах. Задачи решались в основном вычислительного характера , содержащие сложные расчеты, необходимые для прогноза погоды, решения задач атомной энергетики, управления летательной техникой и других стратегических задач.

2 поколение. В 1948 г. Bell Telefon Laboratory объявила о создании первого транзистора. По сравнению с ЭВМ предыдущего поколения улучшились все технические характеристики. Для программирования используются алгоритмические языки, предприняты первые попытки автоматического программирования.

3-е поколение. Особенностью ЭВМ 3 поколения считается применение в их конструкции интегральных схем, а в управлении работой компьютера - операционных систем. Появились возможности мультипрограммирования, управления памятью, устройствами ввода-вывода. Восстановление после сбоев взяла на себя операционная система. С середины 60-х до середины 70-х годов важным видом информационных услуг стали базы данных, содержащие разные виды информации по всевозможным отраслям знаний. Впервые возникает информационная технология поддержки принятия решений. Это совсем новый способ взаимодействия человека и компьютера.

4-е поколение. Основные черты этого поколения ЭВМ - наличие запоминающих устройств, запуск ЭВМ с помощью системы самозагрузки из ПЗУ, разнообразие архитектур, мощные ОС, объединение ЭВМ в сети. Начиная с середины 70-х годов, с созданием национальных и глобальных сетей передачи данных ведущим видом информационных услуг стал диалоговый поиск информации в удаленных от пользователя базах данных.

5-е поколение. ЭВМ со многими десятками параллельно работающих процессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельной векторной структурой, одновременно выполняющих десятки последовательных команд программы.

6-е поколение. Оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой - с сетью из большого числа (десятки тысяч) несложных микропроцессоров, моделирующих структуру нейронных биологических систем.

Классификация ЭВМ по размерам и функциональным возможностям .

Большие ЭВМ. Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверх высокой степенью интеграции. Однако их производительность оказалась недостаточной для моделирования экологических систем, задач генной инженерии, управления сложными оборонными комплексами и др.

Большие ЭВМ часто называют за рубежом MAINFRAME и слухи об их смерти сильно преувеличены.

Как правило, они имеют:

· производительность не менее 10 MIPS (миллионов операций с плавающей точкой в секунду)

· основную память от 64 до 10000 МВ

· внешнюю память не менее 50 ГВ

· многопользовательский режим работы

Основные направления использования - это решение научно-технических задач, работа с большими БД, управление вычислительными сетями и их ресурсами в качестве серверов.

Малые ЭВМ. Малые (мини) ЭВМ - надежные, недорогие и удобные в эксплуатации, обладают несколько более низкими, по сравнению с большими ЭВМ возможностями.

Супер-мини ЭВМ имеют:

· емкость основной памяти - 4-512 МВ

· емкость дисковой памяти - 2 - 100 ГВ

· число поддерживаемых пользователей - 16-512.

Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов, в системах несложного моделирования, в АСУП, для управления технологическими процессами.

СуперЭВМ. Это мощные многопроцессорные ЭВМ с быстродействием сотни миллионов - десятки миллиардов операций в секунду.

Достичь такую производительность на одном микропроцессоре по современным технологиям невозможно, в виду конечного значения скорости распространения электромагнитных волн (300000 км/сек), ибо время распространения сигнала на расстояние в несколько миллиметров становится соизмеримым со временем выполнения одной операции. Поэтому суперЭВМ создают в виде высокопараллельных многопроцессорных вычислительных систем.

В настоящее время в мире насчитывается несколько тысяч суперЭВМ, начиная от простеньких офисных Cray EL до мощных Cray 3, SX-X фирмы NEC, VP2000 фирмы Fujitsu (Япония), VPP 500 фирмы Siemens (Германия).

Микро ЭВМ или персональный компьютер. ПК должен иметь характеристики, удовлетворяющие требованиям общедоступности и универсальности:

· малую стоимость

· автономность эксплуатации

· гибкость архитектуры, дающую возможность адаптироваться в сфере образования, науки, управления, в быту;

· дружественность операционной системы;

· высокую надежность (более 5000 часов наработки на отказ).

Большинство из них имеют автономное питание от аккумуляторов, но могут подключаться к сети.

Специальные ЭВМ. Специальные ЭВМ ориентированы на решение специальных вычислительных задач или задач управления. В качестве специальной ЭВМ можно рассматривать также электронные микрокалькуляторы. Программа, которую выполняет процессор, находится в ПЗУ или в ОП, а т.к. машина решает, как правило, одну задачу, то меняются только данные. Это удобно (программу хранить в ПЗУ), в этом случае повышается надежность и быстродействие ЭВМ. Такой подход часто используется в бортовых ЭВМ, управлении режимом работы фотоаппарата, кинокамеры, в спортивных тренажерах.

Понятие о принципах работы ЭВМ

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистраль включает в себя три многоразрядные шины:

· шину данных,

· шину адреса

· и шину управления.

Шины представляют собой многопроводные линии.

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина). Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 32 бит.

Шина управления. По шине управления передаются сиг­налы, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами и т.д.

В основу построения подавляющего большинства компьюте­ров положены следующие общие принципы, сформулированные в 1945 г. американским ученымДжоном фон Нейманом.

1. Принцип программного управления. Программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности.Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются командыусловного илибезусловного перехода, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп». Таким образом,процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти, поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.Это открывает целый ряд возможностей. Например,программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение цик­лов и подпрограмм).Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаныметоды трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен. Компьютеры, построенные на перечисленных принципах, относятся к типуфон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т. е. они могут работать без счетчика команд, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам необязательно давать ей имя. Такие компьютеры называются не фон-неймановскими.

Основные компоненты персонального компьютера

Компьютер имеет модульную структуру, которая включает:

Системный блок

Металлический корпус с блоком питания. В настоящее время системные блоки выпускают стандарта ATX, размером 21x42x40см, блок питания - 230Вт, рабочее напряжение 210-240В, отсеки 3x5.25"" и 2x3.5"", автоматическое выключение по завершению работы. В корпусе также располагается динамик.

1.1. Системная (материнская) плата (motherboard), на которой располагаются различные устройства, входящие в системный блок. Конструкция материнской платы сделана по принципу модульного конструктора, что позволяет каждому пользователю достаточно легко заменять вышедшие из строя или устаревшие элементы системного блока. На системной плате крепятся:

а) Процессор (CPU - Central Processing Unit) - большая интегральная схема на кристалле. Выполняет логические и арифметические операции, осуществляет управление функционированием компьютера. Процессор характеризуется фирмой изготовителем и тактовой частотой . Наиболее известными изготовителями являются Intel и AMD. Процессоры имеют собственные имена Athlon, Pentium 4, Celeron и т.д. Тактовая частота определяет быстродействие процессора и измеряется в Герцах (1\с). Так, Pentium 4 2,2 ГГц, имеет тактовую 2200000000 Гц (выполняет более 2-х миллиардов операций в секунду). Еще одна характеристика процессора – это наличие кэш-памяти (cache) – еще более быстрая, чем RAM память, в которой хранятся наиболее часто используемые CPU данные. Кэш является буфером между процессором и ОЗУ. Кэш полностью прозрачен, не обнаруживается программно. Кэш снижает общее количество тактов ожидания процессора при обращении к ОЗУ.

б) Сопроцессор (FPU - Floating Point Unit). Встроен в CPU. Выполняет арифметические операции с плавающей запятой.

в) Контроллеры - микросхемы, отвечающие за работу различных устройств компьютера (клавиатуры, HDD, FDD, мыши и т.д.). Сюда же отнесем и микросхему ПЗУ (Постоянное Запоминающее Устройство) в которой хранится ROM-BIOS.

г) Слоты (шины) - разъемы (ISA, PCI, SCSI, AGP и т.д.) под различные устройства (оперативная память, видеокарта и т.п.).

Шина - собственно, набор проводов (линий), соединяющий различные компоненты компьютера для подвода к ним питания и обмена данными. Существующие шины: ISA (частота – 8МГц, количество разрядов – 16, скорость передачи данных – 16Мб/с),

д) Оперативное запоминающее устройство (ОЗУ, RAM - Random Access Memory (типы SIMM, DIMM (Dual Inline Memory Module), DRAM (Dynamic RAM), SDRAM (Synchronous DRAM), RDRAM)) - микросхемы, служащие для кратковременного запоминания промежуточных команд, значений вычислений, производимых CPU, а также других данных. Там же для повышения быстродействия хранятся исполняемые программы. ОЗУ - быстродействующая память со временем регенерации 7·10 -9 сек. Емкость до 1Гб. Питание 3.3В.

е) Видеокарта (видеоакселератор) - устройство, расширяющее возможности и ускоряющее работу с графикой. Видеокарта имеет свою видеопамять (16, 32, 64, 128Мб) для хранения графической информации и графический процессор (GPU – Graphic Processor Unit), берущий на себя вычисления при работе с 3D графикой и видео. GPU работает на частоте 350МГц и содержит 60млн. транзисторов. Поддерживается разрешение 2048х1536 60Гц при 32 битном цвете. Производительность: 286 млн. пикселей/сек. Может иметь выход на TV и видеовход. Поддерживаются эффекты: прозрачность и просвечивание, затенение (получение реалистичного освещения), блики, цветовое освещение (источники света разных цветов), смазывание, объемность, затуманивание, отражение, отражение в кривом зеркале, дрожание поверхностей, искажение изображения, вызываемое водой и теплым воздухом, трансформация искажений по шумовым алгоритмам, имитация туч на небе и др.

ж) Звуковая карта - устройство, расширяющее звуковые возможности компьютера. Звуки генерируются с помощью записанных в память (32Мб) образцов звуков разных тембров. Одновременно воспроизводится до 1024 звуков. Поддерживаются различные эффекты. Могут иметь линейный вход/выход, выход на наушники, микрофонный вход, разъем для джойстика, вход для автоответчика, аналоговый и цифровой вход CD аудио.

з) Сетевая карта - устройство, отвечающее за подключение компьютера к сети для возможности обмена информацией.

Кроме материнской платы в системном блоке находятся:

1.2. Накопитель на жестком магнитном диске (винчестер, HDD - Hard Disk Drive) - герметично запаянный корпус с вращающимися магнитными дисками и магнитными головками. Служит для долговременного хранения информации в виде файлов (программы, тексты, графика, фотография, музыка, видео). Емкость - 75 Гб, размер буфера 1-2Мб, скорость передачи данных 66.6Мб/сек. Максимальная скорость вращения шпинделя - 10 000, 15000 об./мин. HDD фирмы IBM имеет емкость 120Гб, скорость вращения шпинделя 7200 об/мин.

1.3. Накопитель на гибком магнитном диске (дисковод, флоппи, FDD - Floppy Disk Drive) - устройство, служащее для записи/считывания информации с дискет, которые можно переносить с компьютера на компьютер. Емкость дискеты: 1.22Мб (размер 5.25"" (1""=2.54см)), 1.44Мб (размер 3.5""). 1.44Мб эквивалентно 620 страницам текста.

1.4. CD-ROM (Compact Disc Read Only Memory) - устройство, служащее только для считывания информации с CD. Двоичная информация с поверхности CD считывается лучом лазера. Емкость CD - 640Мб=74мин. музыки=150000стр. текста. Скорость вращения шпинделя 8560 об/мин., размер буфера 128Кб, максимальная скорость передачи данных 33.3Мб/сек. Скачки и срывы при воспроизведении видео являются причинами не заполнения или переполнения буфера, служащего для промежуточного хранения передаваемых данных. Имеются регулятор громкости и выход на наушники (для прослушивания музыкальных CD).

1.5. CD-R (Compact Disc Recorder) - устройство, служащее для считывания и однократной записи информации на CD. Запись основана на изменении отражающих свойств вещества подложки CD под действием луча лазера.

1.6. DVD-ROM диски (цифровые видео диски) имеют гораздо большую информационную емкость (до 17 Гбайт), т.к. информация может быть записана на двух сторонах, в два слоя на одной стороне, а сами дорожки имеют меньшую толщину.

Первое поколение DVD-ROM накопителей обеспечивало скорость считывания информации примерно 1,3 Мбайт/с. В настоящее время 5-скоростные DVD-ROM достигают скорости считывания до 6,8 Мбайт/с.

Существуют DVD-R диски (R - recordable, записываемый), которые имеют золотистый цвет. Специальные DVD-R дисководы обладают достаточно мощным лазером, который в процессе записи информации меняют отражающую способность участков поверхности записываемого диска. Информация на таких дисках может быть записана только один раз.

1.7. Существуют также CD-RW и DVD-RW диски (RW - Rewritable, перезаписываемый), которые имеют «платиновый» оттенок. Специальные CD-RW и DVD-RW дисководы в процессе записи информации также меняют отражающую способность отдельных участков поверхности дисков, однако информация на таких дисках может быть записана многократно. Перед перезаписью записанную информацию «стирают» путем нагревания участков поверхности диска с помощью лазера.

Состав ЭВМ кроме системного блока входят следующие устройства ввода-вывода информации.

2. Монитор (дисплей) - устройство вывода графической информации. Есть цифровые и жидкокристаллические. Размеры по диагонали - 14"", 15"", 17"", 19"", 21"", 24"". Размер пикселя - 0.2-0.3мм. Частота смены кадров - 77Гц при разрешении 1920x1200 пиксель, 85Гц при 1280x1024, 160Гц при 800x600. Количество цветов определяется количеством разрядов на один пиксель и может быть 256 (2 8 , где 8 - количество разрядов), 65536 (2 16 , режим High Color), 16 777 216 (2 24 , режим True Color, может быть и 2 32). Есть электронно-лучевые и LCD мониторы. Мониторы используют RGB систему образования цвета, т.е. цвет получается смешением 3-х основных цветов: красного (Red), зеленого (Green) и синего (Blue).

3. Клавиатура (keyboard) - устройство ввода команд и символьной информации (108 клавиш). Подключается к последовательному интерфейсу (COM порт).

4. Манипулятор типа мышь (mouse) - устройство ввода команд. Стандартом является 3-х кнопочная мышь с колесом прокрутки (scrolling).

5. Печатающее устройство (принтер) - устройство для вывода информации на бумагу, пленку или другую поверхность. Подключается к параллельному интерфейсу (LPT порт). USB (Universal Serial Bus) – универсальная последовательная шина заменившая устаревшие COM и LPT порты.

а) Матричный . Изображение формируется иголками, пробивающими красящую ленту.

б) Струйный . Изображение формируется выбрасываемыми из сопел (до 256) микрокаплями краски. Скорость движения капель до 40м/с.

в) Лазерный . Изображение на бумагу переносится со специального барабана, наэлектризованного лазером, к которому притягиваются частички краски (тонера).

6. Сканер - устройство для ввода изображений в компьютер. Есть ручной, планшетный, барабанный.

7. Модем (МОдулятор-ДЕМодулятор) - устройство, позволяющее обмениваться информацией между компьютерами через аналоговые или цифровые каналы. Модемы отличаются друг от друга максимальной скоростью передачи данных (2400, 9600, 14400, 19200, 28800, 33600, 56000 бит в секунду), поддерживаемыми протоколами связи. Бывают модемы внутренние и внешние.

В современном мире очень важно вовремя получать точную информацию. От этого зависит жизнедеятельность людей. По этой причине с каждым днем появляется все больше самых разных устройств, которые собирают и обрабатывают данные. Что же следует понимать под этими процессами?

Процедура получения данных из внешнего мира

Сбором информации может заниматься человек. А можно воспользоваться техническими средствами и системами. В таких ситуациях этот процесс будет происходить аппаратно. К примеру, пользователю удалось получить данные о маршрутах поездов самостоятельно, при помощи изучения расписания на вокзале. То же самое он может сделать с помощью телефона или компьютера.

Это говорит о том, что процедура сбора информации представляет собой достаточно сложный программно-аппаратный комплекс. Что же следует понимать под таким процессом? Это процедура получения каких-либо данных, поступающих из внешнего мира. Подобная информация приводится к стандартному для прикладных систем виду. Современные технические устройства не только собирают данные, кодируют их и выводят на обзор. Также происходит обработка информации.

Использование различных способов работы с данными. Технология работы с ними

Под обработкой следует понимать упорядоченный процесс получения требуемой информации из набора определенных данных с помощью специальных алгоритмов. Эта процедура может быть выполнена несколькими способами. Различают такие средства обработки информации, как централизованное, децентрализованное, распределенное и интегрированное.

Использование вычислительных центров для обработки данных

Централизованная обработка подразумевает, что в наличии должен быть вычислительный центр (ВЦ). При таком способе исходные данные пользователем доставляются на ВЦ. После этого ему предоставляется результат в виде определенной документации.

Отличительной чертой данного способа является трудоемкость. Достаточно сложно наладить быструю бесперебойную связь. Кроме того, имеет место большая загруженность центра информацией. К тому же регламентированы сроки выполнения поставленных задач, и не всегда их получается выполнить вовремя. Такая обработка информации сложная еще и по причине наличия средств безопасности, которые предотвращают возможный несанкционированный доступ.

В чем заключается смысл децентрализованного метода?

В момент появления ПЭВМ возник децентрализованный способ. Он предоставляет возможность автоматизировать определенное рабочее место. На сегодняшний день имеется 3 разновидности технологий подобной обработки данных. В основе первой лежат персональные компьютеры, не объединенные в локальную сеть. Подобная технология обработки информации подразумевает хранение данных в отдельных файлах. Для того чтобы получить показатели, необходимо произвести перезапись файлов на компьютер. К отрицательным моментам можно отнести тот факт, что отсутствует взаимоувязка задач. Невозможно обрабатывать большие объемы информации. К тому же данная обработка информации отличается низкой защищенностью от взлома.

Вторая технология основывается на компьютерах, которые объединяются в локальную сеть, что приводит к формированию единых файлов данных. Однако с большим потоком информации в такой ситуации справиться не получится. Третья технология основывается на компьютерах, объединенных в локальную сеть, в которую также входят сервера.

Работа с большим объемом данных

Распределенная обработка информации основывается на том, что функции делятся между разными ЭВМ, которые подключены к одной сети. Такой способ можно реализовать за счет двух путей:

  1. Необходимо установить ЭВМ в каждом отдельном узле сети. В такой ситуации обработка будет происходить с помощью одного или нескольких компьютеров. Все зависит от реальных возможностей системы, а также от потребностей.
  2. Необходимо размещать большую часть разнообразных процессов внутри одной системы. Подобный путь используется при обработке банковской информации при наличии филиалов или отделений.

Распределенная обработка информации позволяет оперировать данными в любом объеме в заданные сроки. Присутствует достаточно высокий уровень надежности. В значительной степени сокращается время и затраты на передачу информации. Повышается гибкость систем и упрощается разработка с использованием программных средств. В основе распределенного способа лежат специализированные процессы. Другими словами, каждая ЭВМ призвана решать свою задачу.

Использование баз данных для хранения и обработки информации

Интегрированный способ подразумевает формирование информационной модели управляемого объекта. Другими словами, создается распределенная база данных. Подобный метод позволяет сделать процесс обработки информации наиболее удобным для пользователя. Базу данных одновременно применять может не один человек. Но большой объем информации требует распределения. За счет данного метода можно заметно улучшить качество, достоверность и скорость обработки. Это связано с тем, что методика основывается на едином информационном массиве, который однократно вводится в ЭВМ.

Выше были описаны методы обработки информации. Но с помощью каких технических средств происходит этот процесс? Следует подробнее остановиться на этом вопросе.

Что подразумевают под собой технические средства?

Под техническими средствами следует понимать комплекс автономных видов оборудования, позволяющего собирать, накапливать, передавать, обрабатывать и выводить данные, а также совокупность оргтехники, средств управления, ремонтно-профилактических устройств и т. д. Ко всем вышеперечисленным системам предъявляются следующие требования:

  1. Технические средства, в основе которых лежат разные методы обработки информации, должны обеспечивать решение задачи с минимально возможными потерями. Необходимо добиться максимальной точности и достоверности.
  2. Требуется техническая совместимость, агрегативность устройств.
  3. Должна быть обеспечена высокая надежность.
  4. Затраты на покупку должны быть минимальными.

Отечественная и зарубежная промышленность выпускает просто огромный набор технических средств, помогающих обрабатывать информацию. Они могут отличаться друг от друга элементной базой, конструкцией, применением самых разных носителей данных, а также эксплуатационными параметрами и т. д.

Технические средства могут быть:

  1. Вспомогательными.
  2. Основными.

Что следует понимать под вспомогательными видами устройств?

В первом случае это оборудование, которое обеспечивает работоспособность базовых средств. Также к вспомогательным относятся устройства, способствующие упрощению управленческого труда. Они делают его более комфортным. Это может быть оргтехника и ремонтно-профилактические средства. Организационные устройства включают в себя большое количество номенклатурных средств, начиная с канцелярской продукции и заканчивая устройствами доставки, размножения, удаления, поиска и хранения данных. Речь идет обо всех видах оборудований, за счет которых деятельность управленца становится легче, удобнее и комфортнее.

Что входит в комплекс основных видов устройств?

Технология обработки информации может базироваться на основных средствах. Под ними следует понимать устройства, направленные на автоматизацию работы с данными. Для того чтобы можно было наладить контроль над определенными процессами, требуется обладать некоторыми данными управленческого характера. За счет них появится возможность охарактеризовать состояние, параметры технологических процессов, количественные и стоимостные показатели.

Основные системы обработки информации могут включать в себя:

  1. Устройства, регистрирующие и осуществляющие сбор данных.
  2. Оборудование, которое принимает и передает данные.
  3. Средства, подготавливающие данные.
  4. Устройства ввода, обработки и отображения данных.

Заключение

В данной статье была рассмотрена такая тема, как сбор и обработка информации. Было решено заострить внимание именно на работе с данными. Это достаточно актуальная и сложная задача, которая требует высокой надежности, точности и достоверности. Надеемся, что данный обзор помог разобраться, что же собой представляет процесс обработки информации.

Технические средства обработки информации делятся на две большие группы. Это основные и вспомогательные средства обработки.

Вспомогательные средства – это оборудование, обеспечивающее работоспособность основных средств, а также оборудование, облегчающее и делающее управленческий труд комфортнее. К вспомогательным средствам обработки информации относятся средства оргтехники и ремонтно-профилактические средства. Оргтехника представлена весьма широкой номенклатурой средств, от канцелярских товаров, до средств доставления, размножения, хранения, поиска и уничтожения основных данных, средств административно производственной связи и так далее, что делает работу управленца удобной и комфортной.

Основные средства – это орудия труда по автоматизированной обработке информации. Известно, что для управления теми или иными процессами необходима определенная управленческая информация, характеризующая состояния и параметры технологических процессов, количественные, стоимостные и трудовые показатели производства, снабжения, сбыта, финансовой деятельности и т.п. К основным средствам технической обработки относятся: средства регистрации и сбора информации, средства приема и передачи данных, средства подготовки данных, средства ввода, средства обработки информации и средства отображения информации. Ниже, все эти средства рассмотрены подробно.

Получение первичной информации и регистрация является одним из трудоемких процессов. Поэтому широко применяются устройства для механизированного и автоматизированного измерения, сбора и регистрации данных. Номенклатура этих средств весьма обширна. К ним относят: электронные весы, разнообразные счетчики, табло, расходомеры, кассовые аппараты, машинки для счета банкнот, банкоматы и многое другое. Сюда же относят различные регистраторы производства, предназначенные для оформления и фиксации сведений о хозяйственных операциях на машинных носителях.

Средства приема и передачи информации. Под передачей информации понимается процесс пересылки данных (сообщений) от одного устройства к другому. Взаимодействующая совокупность объектов, образуемые устройства передачи и обработки данных, называется сетью. Объединяют устройства, предназначенные для передачи и приема информации. Они обеспечивают обмен информацией между местом её возникновения и местом её обработки. Структура средств и методов передачи данных определяется расположением источников информации и средств обработки данных, объемами и временем на передачу данных, типами линий связи и другими факторами. Средства передачи данных представлены абонентскими пунктами (АП), аппаратурой передачи, модемами, мультиплексорами.

Средства подготовки данных представлены устройствами подготовки информации на машинных носителях, устройства для передачи информации с документов на носители, включающие устройства ЭВМ. Эти устройства могут осуществлять сортировку и корректирование.

Средства ввода служат для восприятия данных с машинных носителей и ввода информации в компьютерные системы

Средства обработки информации играют важнейшую роль в комплексе технических средств обработки информации. К средствам обработки можно отнести компьютеры, которые в свою очередь разделим на четыре класса: микро, малые (мини); большие и суперЭВМ. Микро ЭВМ бывают двух видов: универсальные и специализированные.

И универсальные и специализированные могут быть как многопользовательскими - мощные ЭВМ, оборудованные несколькими терминалами и функционирующие в режиме разделения времени (серверы), так и однопользовательскими (рабочие станции), которые специализируются на выполнении одного вида работ.

Малые ЭВМ – работают в режиме разделения времени и в многозадачном режиме. Их положительной стороной является надежность и простота в эксплуатации.

Большие ЭВМ – (мейнфермы) характеризуются большим объемом памяти, высокой отказоустойчивостью и производительностью. Также характеризуется высокой надежностью и защитой данных; возможностью подключения большого числа пользователей.

Супер-ЭВМ – это мощные многопроцессорные ЭВМ с быстродействием 40 млрд. операций в секунду.

Сервер - компьютер, выделенный для обработки запросов от всех станций сети и представляющий этим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Универсальный сервер называется - сервер-приложение. Мощные серверы можно отнести к малым и большим ЭВМ. Сейчас лидером являются серверы Маршалл, а также существуют серверы Cray (64 процессора).

Средства отображения информации используют для вывода результатов вычисления, справочных данных и программ на машинные носители, печать, экран и так далее. К устройствам вывода можно отнести мониторы, принтеры и плоттеры.

Монитор – это устройство, предназначенное для отображения информации, вводимой пользователем с клавиатуры или выводимой компьютером.

Принтер – это устройство вывода на бумажный носитель текстовой и графической информации.

Плоттер – это устройство вывода чертежей и схем больших форматов на бумагу.

18. Мощность и энергия трехфазной цепи и способы ее измерения.

19. Отключение электрической цепи контактными аппаратами. Гашение магнитного поля при размыкании контактов.

20. Цифровые методы измерения электрической энергии и мощности на переменном токе.

21. Рабочие характеристики асинхронного двигателя. КПД и коэффициент мощности АД.

22. Технология клиент/сервер. Функции и варианты технологии клиент/сервер.

23. Электромеханические системы измерительных приборов. Класс точности. Абсолютная и относительная погрешности измерения.

24. Типы электромагнитов постоянного и переменного тока, Назначение и принцип работы.

25. Потери мощности и энергии в линиях и трансформаторах. Мероприятия по их снижению.

26. Построение системного проекта с использованием IDEF – технологии.

27. Электрические цепи со взаимной индуктивностью. Согласное и встречное включение. Каким образом можно приблизить коэффициент магнитной связи к единице?

28. Выбор количества и номинальной мощности трансформаторов и автотрансформаторов понижающих подстанций с учетом допустимых перегрузок.

29. Метод симметричных составляющих. Разложение трехфазных несимметричных напряжений и токов на прямую, обратную и нулевую последовательность.

30. Устройство и принцип действия синхронной машины в режиме генератора двигателя и компенсатора реактивной мощности.

31. Функции и принципы построения АСУ энергосбережения энергетических объектов.

32. Переходные процессы (ПП) в линейных электрических цепях с сосредоточенными параметрами. Начальные условия и законы коммутации. Постоянная времени ПП.

33. Выбор экономических сечений проводов ВЛ и токоведущих жил КЛ.

34. Электродвижущая сила и электромагнитный момент машины постоянного тока.

35. Инструментальная среда BPwin. Анализ функциональной организации предприятия.

36. Основные понятия и соотношения для магнитных цепей. Аналогия электрических и магнитных цепей. Электромагнит и его тяговое усилие.

37. Стандарты пользовательского интерфейса. Принципы перехода к новой ИС.

38. Уравнения электромагнитного поля в интегральной и дифференциальной форме записи для области низких частот.

39. Пароли и их надежность. Набор регистров для поддержки механизма защиты памяти.

40. Магнитные материалы, их свойства и характеристики. Потери на гистерезис и вихревые токи. Способы измерения петли гистерезиса ферромагнитного сердечника.

41. Назначение, устройство, принцип работы, условные обозначения логических элементов.

42. Схемы внешних сетей систем электроснабжения предприятий. Схемы межцеховых сетей.

43. Виды угроз и атак на операционную систему. Модели защиты в Unix и Windows 2000.

44. Различные виды уравнений четырехполюсника. Системы параметров и их взаимосвязь. Параметры Т - и Г – образной схемы замещения четырехполюсника и их экспериментальное определение.

45. Главные понижающие подстанции, подстанции глубоких вводов (высокое напряжение).

46. CASE – средства BPwin, Erwin. Связывание моделей процессов и данных.

47. Цепи с распределенными параметрами. Уравнения длинной линии и их решение в установившемся режиме. При каких условиях отсутствует отражение падающей волны?

48. Определение центра электрических нагрузок. Выбор местоположения ГПП, ТП и РП.

49. Базы данных и принципы их построения. Основные понятия реляционных баз данных.

50. Уравнения Лапласа и Пуассона. Граничные условия на поверхности раздела сред с различными электрическими и магнитными свойствами.

51. Нагрузочная характеристика и КПД трансформатора.

52. Определение расчетных нагрузок разных ступеней и элементов систем электроснабжения.

53. Виды и количественные характеристики оперативно-диспетчерской информации.

54. Полная система уравнений электромагнитного поля в интегральной и дифференциальной форме записи.

55. Параметры и характеристики тиристоров. Виды тиристоров. Способы управления тиристорами. IGBTI – силовые транзисторы.

56. Распределительные пункты средних напряжений, цеховые трансформаторные подстанции.

57. Оценка качества передачи оперативно - диспетчерской информации.

58. Магнитный поток и его непрерывность. Закон полного тока в интегральной и дифференциальной форме записи. Скалярный и векторный магнитный потенциалы.

59. Нагрузочная способность трансформаторов. Допустимые и аварийные перегрузки.

60. Информационные системы в энергосбережении.

61. Энергия магнитного и электрического поля. Передача электрической энергии по двухпроводной линии.

62. Электродинамическая стойкость электрических аппаратов. Электродинамические усилия.

63. Информационный обмен, система и сети информационного обмена в энергосбережении.

64. Комплексный метод расчета цепей переменного синусоидального тока. Рассмотреть пример.

65. Регулирование скорости асинхронного двигателя путем изменения частоты питающего напряжения и числа пар полюсов.

66. Задачи энергосбережения и энергоаудита: количественные и качественные показатели.

67. Проблемы безопасности информации. Современные методы защиты информации.

68. Частотные характеристики пассивных двухполюсников.

69. Устройство и принцип действия трансформатора. Применение трансформатора для согласования с нагрузкой.

70. Трехфазные цепи. Назначение нулевого провода в трехфазных цепях. Что происходит в трехфазной цепи при обрыве одной из фаз?

71. Основные показатели, характеризующие регулируемый электропривод. Частотно-регулируемый электропривод.

72. Характеристика среды производственных помещений промышленных предприятий и ее влияние на конструктивное исполнение цеховых сетей.

73. Информационный обмен, система и сети информационного обмена в энергосбережении.

74. Электромагнит и его тяговое усилие.

75. Генераторы и двигатели постоянного тока: независимое, параллельное и смешанное возбуждение. Механическая характеристика двигателя постоянного тока.

76. Устройство, принцип работы тиристоров. Виды тиристоров.

77. Информационные основы управления ЭЭС (сообщения, информация, сигнал, помехи, кодирование).

78. Магнитомягкие и магнитотвердые материалы, область применения.

79. Регулирование скорости, тока и момента электропривода с двигателями постоянного тока независимого возбуждения.

80. Частотные преобразователи напряжения для регулирования частоты вращения АД.

81. Моделирование документооборота и обработки информации.

82. Измерение постоянного и переменного тока. Измерение больших токов и напряжений.

83. Структурная схема электропривода со стабилизацией оборотов на валу АД.

84. Типы и конструкции цеховых ТП.

85. Технология работы в среде распределенной обработки данных.

86. Передача электрической энергии по двухпроводной линии.

87. Режимы работы асинхронных электроприводов.

88. Измерительные трансформаторы тока и напряжения. Измерение мощности и энергии в цепях переменного тока. Почему нельзя размыкать вторичную обмотку трансформатора тока в рабочем режиме?

89. Основные процессы преобразования информации. Определение информационной системы (ИС).

90. Баланс мощности в электрических цепях.

91. Мощность и электромагнитный момент и механическая мощность асинхронного двигателя.

92. Коэффициенты, характеризующие графики нагрузок.

93. Варианты технологии клиент/сервер.

94. Последовательное соединение магнитосвязанных катушек. От чего зависит взаимная индуктивность? Экспериментальное определение взаимной индуктивности.

95. Процесс самовозбуждения генератора постоянного тока. Пуск двигателя в рабочий режим.

96. Требования, предъявляемые к системам электроснабжения промышленных предприятий. Источники питания и требование к источникам питания.

97. Административные политики. Брандмауэры, их назначение и функции.

98.Уравнения Лапласа и Пуассона для электростатического поля.

99. Работа синхронной машины в режиме генератора и двигателя.

100.Требования, предъявляемые заземляющему устройству.

101.Стандарты пользовательского интерфейса. Принципы перехода к новой информационной системе.

Утверждаю:

Зав. кафедрой ТиОЭ А.П. Попов

Технологический процесс обработки данных в информационных системах осуществляется при помощи:

    технических средств сбора и регистрации данных;

    средств телекоммуникаций;

    систем хранения, поиска и выборки данных;

    средств вычислительной обработки данных;

    технических средств оргтехники.

В современных информационных системах технические средства обработки данных используются комплексно, на основе технико-экономического расчёта целесообразности их применения, с учётом соотношения “цена/качество” и надежности работы технических средств.

Информационные технологии

Информационные технологии можно определить как совокупность методов – приёмов и алгоритмов обработки данных и инструментальных средств – программных и технических средств обработки данных.

Информационные технологии можно условно разделить на категории:

    Базовые информационные технологии – это универсальные технологические операции обработки данных, как правило, не зависящие от содержания обрабатываемой информации, например, запуск программ на выполнение, копирование, удаление, перемещение и поиск файлов и т.п. Они основаны на использовании широко применяемых программных и технических средств обработки данных.

    Специальные информационные технологии – комплекс информационно связанных базовых информационных технологий, предназначенных для выполнения специальных операций с учетом содержания и/или формы представления данных.

Информационные технологии являются необходимым базисом для создания информационных систем.

Информационные системы

Информационная система (ИС) представляет собой коммуникационную систему по сбору, передаче, переработке информации об объекте, снабжающую работников различного ранга информацией для реализации функции управления.

Пользователями ИС являются организационные единицы управления – структурные подразделения, управленческий персонал, исполнители. Содержательную основу ИС составляют функциональные компоненты – модели, методы и алгоритмы формирования управляющей информации. Функциональная структура ИС представляет собой совокупность функциональных компонентов: подсистем, комплексов задач, процедур обработки информации, определяющих последовательность и условия их выполнения.

Внедрение информационных систем производится с целью повышения эффективности производственно-хозяйственной деятельности объекта за счет не только обработки и хранения рутинной информации, автоматизации конторских работ, но и за счет принципиально новых методов управления. Эти методы основаны на моделировании действий специалистов организации при принятии решений (методы искусственного интеллекта, экспертные системы и т.п.), использовании современных средств телекоммуникаций (электронная почта, телеконференции), глобальных и локальных вычислительных сетей и т. д.

Классификация ИС проводится по следующим признакам:

    характер обработки информации;

    масштаб и интеграция компонентов ИС;

    информационно-технологическая архитектура ИС.

По характеру обработки информации и сложности алгоритмов обработки ИС принято делить на два больших класса:

    ИС для оперативной обработки данных. Это традиционные ИС для учета и обработки первичных данных большого объема с применением жестко регламентированных алгоритмов, фиксированной структуры базы данных (БД) и т.п.

    ИС поддержки и принятия решений . Они ориентированы на аналитическую обработку больших объемов информации, интеграцию разнородных источников данных, использование методов и средств аналитической обработки.

В настоящее время сложились основные информационно-технологические архитектуры:

    ИС с централизованной обработкой данных,

    архитектура вида “файл-сервер”,

    архитектура вида “клиент-сервер”.

Централизованная обработка предполагает объединение на одном компьютере ПС пользовательского интерфейса, приложений и БД.

В архитектуре файл-сервер ” многим пользователям сети предоставляются файлы главного компьютера сети, называемого файл-сервером . Это могут быть отдельные файлы пользователей, файлы баз данных и программы приложений. Вся обработка данных производится на компьютерах пользователей. Такой компьютер называется рабочей станцией (РС). На ней устанавливаются ПС пользовательского интерфейса и приложений, которые могут вводиться как с устройств ввода РС, так и передаваться по сети с файл-сервера. Файл-сервер может использоваться также для централизованного хранения файлов отдельных пользователей, пересылаемых ими по сети с РС. Архитектура “файл-сервер ” применяется преимущественно в локальных компьютерных сетях.

В архитектуре клиент-сервер ” программное обеспечение ориентировано не только на коллективное использование ресурсов, но и на их обработку в месте размещения ресурса по запросам пользователей. Программные системы архитектуры “клиент-сервер” состоят из двух частей: программного обеспечения сервера и программного обеспечения пользователя-клиента. Работа этих систем организуется следующим образом: программы-клиенты выполняются на компьютере пользователя и посылают запросы к программе-серверу, которая работает на компьютере общего доступа. Основная обработка данных производится мощным сервером, а на компьютер пользователя посылаются только результаты выполнения запроса. Так, например сервер баз данных используется в мощных СУБД, таких как Microsoft SQL Server, Oracle и др., работающих с распределенными базами данных. Серверы баз данных рассчитаны на работу с большими объемами данных (десятки гигабайт и более) и большое число пользователей и обеспечивают при этом высокую производительность, надежность и защищенность. Архитектура “клиент-сервер”, в определенном смысле, является основной в приложениях глобальных компьютерных сетей.

При проектировании технологических процессов ориентируются на режимы их реализации. Режим реализации технологии зависит от объемно-временных особенностей решаемых задач: периодичности и срочности, требований к быстроте обработки сообщений, а также от режимных возможностей технических средств, и в первую очередь ЭВМ. Существуют: пакетный режим; режим реального масштаба времени; режим разделения времени; регламентный режим; запросный; диалоговый; телеобработки; интерактивный; однопрограммный; многопрограммный (мультиобработка).

Пакетный режим . При использовании этого режима пользователь не имеет непосредственного общения с ЭВМ. Сбор и регистрация информации, ввод и обработка не совпадают по времени. Вначале пользователь собирает информацию, формируя ее в пакеты в соответствии с видом задач или каким-то др. признаком. (Как правило, это задачи неоперативного характера, с долговременным сроком действия результатов решения). После завершения приема информации производится ее ввод и обработка, т.е., происходит задержка обработки. Этот режим используется, как правило, при централизованном способе обработки информации.

Диалоговый режим (запросный) режим, при котором существует возможность пользователя непосредственно взаимодействовать с вычислительной системой в процессе работы пользователя. Программы обработки данных находятся в памяти ЭВМ постоянно, если ЭВМ доступна в любое время, или в течение определенного промежутка времени, когда ЭВМ доступна пользователю. Взаимодействие пользователя с вычислительной системой в виде диалога может быть многоаспектным и определяться различными факторами: языком общения, активной или пассивной ролью пользователя; кто является инициатором диалога - пользователь или ЭВМ; временем ответа; структурой диалога и т.д. Если инициатором диалога является пользователь, то он должен обладать знаниями по работе с процедурами, форматами данных и т.п. Если инициатор - ЭВМ, то машина сама сообщает на каждом шаге, что нужно делать с разнообразными возможностями выбора. Этот метод работы называется “выбором меню”. Он обеспечивает поддержку действий пользователя и предписывает их последовательность. При этом от пользователя требуется меньшая подготовленность.

Диалоговый режим требует определенного уровня технической оснащенности пользователя, т.е. наличие терминала или ПЭВМ, связанных с центральной вычислительной системой каналами связи. Этот режим используется для доступа к информации, вычислительным или программным ресурсам. Возможность работы в диалоговом режиме может быть ограничена во времени начала и конца работы, а может быть и неограниченной.

Иногда различают диалоговый и запросный режимы, тогда под запросным понимается одноразовое обращение к системе, после которого она выдает ответ и отключается, а под диалоговым - режим, при которым система после запроса выдает ответ и ждет дальнейших действий пользователя.

Режим реального масштаба времени . Означает способность вычислительной системы взаимодействовать с контролируемыми или управляемыми процессами в темпе протекания этих процессов. Время реакции ЭВМ должно удовлетворять темпу контролируемого процесса или требованиям пользователей и иметь минимальную задержку. Как правило, этот режим используется при децентрализованной и распределенной обработке данных.

Режим телеобработки дает возможность удаленному пользователю взаимодействовать с вычислительной системой.

Интерактивный режим предполагает возможность двустороннего взаимодействия пользователя с системой, т.е. у пользователя есть возможность воздействия на процесс обработки данных.

Режим разделения времени предполагает способность системы выделять свои ресурсы группе пользователей поочередно. Вычислительная система настолько быстро обслуживает каждого пользователя, что создается впечатление одновременной работы нескольких пользователей. Такая возможность достигается за счет соответствующего программного обеспечения.

Однопрограммный и многопрограммный режимы характеризуют возможность системы работать одновременно по одной или нескольким программам.

Регламентный режим характеризуется определенностью во времени отдельных задач пользователя. Например, получение результатных сводок по окончании месяца, расчет ведомостей начисления зарплаты к определенным датам и т.д. Сроки решения устанавливаются заранее по регламенту в противоположность к произвольным запросам.

Различаются следующие способы обработки данных: централизованный, децентрализованный, распределенный и интегрированный.

Централизованная предполагает наличие. При этом способе пользователь доставляет на ВЦ исходную информацию и получают результаты обработки в виде результативных документов. Особенностью такого способа обработки являются сложность и трудоемкость налаживания быстрой, бесперебойной связи, большая загруженность ВЦ информацией (т.к. велик ее объем), регламентацией сроков выполнения операций, организация безопасности системы от возможного несанкционированного доступа.

Децентрализованная обработка. Этот способ связан с появлением ПЭВМ, дающих возможность автоматизировать конкретное рабочие место.

Распределенный способ обработки данных основан на распределении функций обработки между различными ЭВМ, включенными в сеть. Этот способ может быть реализован двумя путями: первый предполагает установку ЭВМ в каждом узле сети (или на каждом уровне системы), при этом обработка данных осуществляется одной или несколькими ЭВМ в зависимости от реальных возможностей системы и ее потребностей на текущий момент времени. Второй путь - размещение большого числа различных процессоров внутри одной системы. Такой путь применяется в системах обработки банковской и финансовой информации, там, где необходима сеть обработки данных (филиалы, отделения и т.д.). Преимущества распределенного способа: возможность обрабатывать в заданные сроки любой объем данных; высокая степень надежности, так как при отказе одного технического средства есть возможность моментальной замены его на другой; сокращение времени и затрат на передачу данных; повышение гибкости систем, упрощение разработки и эксплуатации программного обеспечения и т.д. Распределенный способ основывается на комплексе специализированных процессоров, т.е. каждая ЭВМ предназначена для решения определенных задач, или задач своего уровня.

Интегрированный способ обработки информации. Он предусматривает создание информационной модели управляемого объекта, то есть создание распределенной базы данных. Такой способ обеспечивает максимальное удобство для пользователя. С одной стороны, базы данных предусматривают коллективное пользование и централизованное управление. С другой стороны, объем информации, разнообразие решаемых задач требуют распределения базы данных. Технология интегрированной обработки информации позволяет улучшить качество, достоверность и скорость обработки, т.к. обработка производится на основе единого информационного массива, однократно введенного в ЭВМ. Особенностью этого способа является отделение технологически и по времени процедуры обработки от процедур сбора, подготовки и ввода данных.

Комплекс технических средств обработки информации – это совокупность автономных устройств сбора, накопления, передачи, обработки и представления информации, а также средств оргтехники, управления, ремонтно-профилактических и других. К комплексу технических средств предъявляют ряд требований:

Обеспечение решения задач с минимальными затратами, необходимой точности и достоверности

Возможность технической совместимости устройств, их агрегативность

Обеспечение высокой надежности

Минимальные затраты на приобретения

Отечественной и зарубежной промышленностью выпускается широкая номенклатура технических средств обработки информации, различающихся элементной базой, конструктивным исполнением, использованием различных носителей информации, эксплуатационными характеристиками и др.

Технические средства обработки информации делятся на две большие группы. Это основные и вспомогательные средства обработки.

Вспомогательные средства – это оборудование, обеспечивающее работоспособность основных средств, а также оборудование, облегчающее и делающее управленческий труд комфортнее. К вспомогательным средствам обработки информации относятся средства оргтехники и ремонтно-профилактические средства. Оргтехника представлена весьма широкой номенклатурой средств, от канцелярских товаров, до средств доставления, размножения, хранения, поиска и уничтожения основных данных, средств административно производственной связи и так далее, что делает работу управленца удобной и комфортной.

Основные средства – это орудия труда по автоматизированной обработке информации. Известно, что для управления теми или иными процессами необходима определенная управленческая информация, характеризующая состояния и параметры технологических процессов, количественные, стоимостные и трудовые показатели производства, снабжения, сбыта, финансовой деятельности и т.п. К основным средствам технической обработки относятся: средства регистрации и сбора информации, средства приема и передачи данных, средства подготовки данных, средства ввода, средства обработки информации и средства отображения информации. Ниже, все эти средства рассмотрены подробно.

Получение первичной информации и регистрация является одним из трудоемких процессов. Поэтому широко применяютсяустройства для механизированного и автоматизированного измерения, сбора и регистрации данных. Номенклатура этих средств весьма обширна. К ним относят: электронные весы, разнообразные счетчики, табло, расходомеры, кассовые аппараты, машинки для счета банкнот, банкоматы и многое другое. Сюда же относят различные регистраторы производства, предназначенные для оформления и фиксации сведений о хозяйственных операциях на машинных носителях.

Средства приема и передачи информации. Под передачей информации понимается процесс пересылки данных (сообщений) от одного устройства к другому. Взаимодействующая совокупность объектов, образуемые устройства передачи и обработки данных, называется сетью.Объединяют устройства, предназначенные для передачи и приема информации. Они обеспечивают обмен информацией между местом её возникновения и местом её обработки. Структура средств и методов передачи данных определяется расположением источников информации и средств обработки данных, объемами и временем на передачу данных, типами линий связи и другими факторами. Средства передачи данных представлены абонентскими пунктами (АП), аппаратурой передачи, модемами, мультиплексорами.

Средства подготовки данных представлены устройствами подготовки информации на машинных носителях, устройства для передачи информации с документов на носители, включающие устройства ЭВМ. Эти устройства могут осуществлять сортировку и корректирование.

Средства ввода служат для восприятия данных с машинных носителей и ввода информации в компьютерные системы

Средства обработки информации играют важнейшую роль в комплексе технических средств обработки информации. К средствам обработки можно отнести компьютеры, которые в свою очередь разделим на четыре класса: микро, малые (мини); большие и суперЭВМ. Микро ЭВМ бывают двух видов: универсальные и специализированные.

И универсальные и специализированные могут быть как многопользовательскими - мощные ЭВМ, оборудованные несколькими терминалами и функционирующие в режиме разделения времени (серверы), так и однопользовательскими (рабочие станции), которые специализируются на выполнении одного вида работ.

Малые ЭВМ – работают в режиме разделения времени и в многозадачном режиме. Их положительной стороной является надежность и простота в эксплуатации.

Большие ЭВМ – (мейнфермы) характеризуются большим объемом памяти, высокой отказоустойчивостью и производительностью. Также характеризуется высокой надежностью и защитой данных; возможностью подключения большого числа пользователей.

Супер-ЭВМ – это мощные многопроцессорные ЭВМ с быстродействием 40 млрд. операций в секунду.

Сервер - компьютер, выделенный для обработки запросов от всех станций сети и представляющий этим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Универсальный сервер называется - сервер-приложение. Мощные серверы можно отнести к малым и большим ЭВМ. Сейчас лидером являются серверы Маршалл, а также существуют серверы Cray (64 процессора).

Средства отображения информации используют для вывода результатов вычисления, справочных данных и программ на машинные носители, печать, экран и так далее. К устройствам вывода можно отнести мониторы, принтеры и плоттеры.

Монитор – это устройство, предназначенное для отображения информации, вводимой пользователем с клавиатуры или выводимой компьютером.

Принтер – это устройство вывода на бумажный носитель текстовой и графической информации.

Плоттер – это устройство вывода чертежей и схем больших форматов на бумагу.

Технология - это комплекс научных и инженерных знаний, реализованных в приемах труда, наборах материальных, технических, энергетических, трудовых факторов производства, способах их соединения для создания продукта или услуги, отвечающих определенным требованиям. Поэтому технология неразрывно связана с машинизацией производственного или непроизводственного, прежде всего управленческого процесса. Управленческие технологии основываются на применении компьютеров и телекоммуникационной техники.

Согласно определению, принятому ЮНЕСКО, информационная технология - это комплекс взаимосвязанных, научных, технологических и инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием. Их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами информационные технологии требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их введение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.

Целью информационной технологии управления является удовлетворение информацион­ных потребностей всех без исключения сотрудников фирмы, имеющих дело с принятием решений. Она может быть полезна на любом уровне управления.

Эта технология ориентирована на работу в среде информационной системы управления и используется при худшей структурированности решаемых задач, если их сравнивать с задачами, решаемыми с помощью информационной технологии обработки данных.

Информационная технология управления идеально подходит для удовлетворения сходных информационных потребностей работников различных функциональных подсистем (подразделений) или уров­ней управления фирмой. Поставляемая ими информация содержит сведения о прошлом, настоящем и вероятном будущем фирмы. Эта информация имеет вид регулярных или спе­циальных управленческих отчетов.

Для принятия решений на уровне управленческого контроля информация должна быть представлена в агрегированном виде, так, чтобы просматривались тенденции изменения данных, причины возникших отклонений и возможные решения. На этом этапе решаются следующие задачи обработки данных:

· оценка планируемого состояния объекта управления;

· оценка отклонений от планируемого состояния;

· выявление причин отклонений;

· анализ возможных решений и действий.

Информационная технология управления направлена на создание различных видов отчетов.

Регулярные отчеты создаются в соответствии с установленным графиком, опре­деляющим время их создания, например месячный анализ продаж компании.

Специальные отчеты создаются по запросам управленцев или когда в компании произошло что-то незапланированное. И те, и другие виды отчетов могут иметь форму суммирующих, сравнительных и чрезвычайных отчетов.

В суммирующих отчетах данные объединены в отдельные группы, отсортирова­ны и представлены в виде промежуточных и окончательных итогов по отдельным полям.

Сравнительные отчеты содержат данные, полученные из различных источников или классифицированные по различным признакам и используемые для целей сравнения.

Чрезвычайные отчеты содержат данные исключительно (чрезвычайного) характера.

Использование отчетов для поддержки управления оказывается особенно эффектив­ным при реализации так называемого управления, но отклонениям. Управление по отклонениям предполагает, что главным содержанием получаемых менеджером данных должны являться отклонения состояния хозяйственной деятельности фирмы от некоторых установленных стандартов (например, от ее запланированного состоя­ния). При использовании на фирме принципов управления по отклонениям к создаваемым отчетам предъявляются следующие требования:

· отчет должен создаваться только тогда, когда отклонение произошло

· сведения в отчете должны быть отсортированы по значению критического для данно­го отклонения показателя;

· все отклонения желательно показать вместе, чтобы менеджер мог уловить существую­щую между ними связь;

· в отчете необходимо показать, количественное отклонение от нормы.

Основные компоненты

Входная информация поступает из систем операционного уровня. Выходная информация формируется в виде управленческих отчетов в удобном для принятия решения виде. Содержимое базы данных при помощи соответствующего программного обеспечения преобразуется в периодические и специальные отчеты, поступающие к специалистам, уча­ствующим в принятии решений в организации. База данных, используемая для получения указанной информации, должна состоять из двух элементов:

1) данных, накапливаемых на основе оценки операций, проводимых фирмой;

2) планов, стандартов, бюджетов и других нормативных документов, определяющих планируемое состояние объекта управления (подразделения фирмы).

При внедрении информационной технологии в фирму необходимо выбрать одну из двух ос­новных концепций, отражающих сложившиеся точки зрения на существующую структуру организации и роль в ней компьютерной обработки информации.

Первая концепция ориентируется на существующую структуру фирмы. Ин­формационная технология приспосабливается к организационной структуре, и происходит лишь модернизация методов работы. Коммуникации развиты слабо, рационализируются только рабочие места. Происходит распределение функций между техническими работни­ками и специалистами. Степень риска от внедрения новой информационной технологии ми­нимальна., так как затраты незначительны и организационная структура фирмы не меняется.

Основной недостаток такой стратегии - необходимость непрерывных измене­ний формы представления информации, приспособленной к конкретным технологическим методам и техническим средствам. Любое оперативное решение “вязнет” на различных эта­пах информационной технологии.

К достоинствам стратегии можно отнести минимальные степень риска и затраты.

Вторая концепци я ориентируется на будущую структуру фирмы. Существую­щая структура будет модернизироваться.

Данная стратегия предполагает максимальное развитие коммуникаций и разработку новых организационных взаимосвязей. Продуктивность организационной структуры фирмы возрастает, так как рационально распределяются архивы данных, снижается объем циркулирующей по системным каналам информации и достигается сбалансированность между решаемыми задачами.

К основным ее недостаткам следует отнести:

· существенные затраты на первом этапе, связанном с разработкой общей концепции и обследованием всех подразделений фирмы;

· наличие психологической напряженности, вызванной предполагаемыми изменениями структуры фирмы и, как следствие, изменениями штатного расписания и должност­ных обязанностей

Достоинствами данной стратегии являются:

· рационализация организационной структуры фирмы;

· максимальная занятость всех работников;

· высокий профессиональный уровень;

· интеграция профессиональных функций за счет использования компьютерных сетей.

Новая информационная технология в фирме должна быть такой, чтобы уровни инфор­мации и подсистемы, ее обрабатывающие, связывались между собой единым массивом ин­формации. При этом предъявляются два требования. Во-первых, структура системы переработки информации должна соответствовать распределению полномочий в фирме. Во-вторых, информация внутри системы должна функционировать так, чтобы достаточно полно отражать уровни управления.

Для поддержки новых хозяйственных механизмов должны быть разработаны адекватные рыночным отношениям НИТ. В частности, в современных условиях изменениям подвергаются банковская и инвестиционная деятельность, совершенствуется налогообложение, появляются новые виды управленческой деятельности и субъекты рынка, что требует эффективных прикладных информационных технологий.

Банковские системы. Развитие и совершенствование банковских структур порождает потребность в новых услугах финансовых учреждений. Децентрализация банковской системы ведет к принципиально новой организации, требующей разработки концепции комплексной информатизации отдельных учреждений для повышения эффективности их собственного функционирования, а также для взаимодействия между собой, с ЦБ РФ и с зарубежными партнерами. Банковские информационные технологии должны обеспечивать достаточную оперативность при организации расчетов. Кроме того, эта сфера банковской деятельности наиболее трудоемка, содержит большой объем вычислений и характеризуется как рутинная.

Применение имитационного моделирования для построения банковских технологий - один из наиболее перспективных подходов к решению стратегических проблем. Банкир может имитировать финансовые показатели банка, оценивать эффективность и последствия принимаемых решений и таким образом определять свою политику на финансовом рынке. К этому направлению тесно примыкает разработка экспертных систем, ориентированных как на клиентов банка, так и на банковских специалистов.

Чрезвычайно важным вопросом информатизации банковской деятельности остается организация связи между банками России. Существующая бумажная технология обычно требует 2-3 дней для перевода денег. При этом задержка может быть обусловлена как самой формой организации расчетов, так и состоянием коммуникаций. Внедрение НИТ может способствовать выходу из этого кризиса. Поскольку самостоятельно разрабатываемые и модернизируемые программные комплексы стоят слишком дорого, усиливается роль организаций, специализирующихся в области банковских технологий и способных решать банковские проблемы комплексно. Появившиеся продукты, называемые “банковскими платформами”, дающие, с точки зрения единой унифицированной функциональной базы, общее решение всех банковских задач, будут определять стандарты качества и функциональные возможности автоматизированных систем обработки банковской информации.

Биржевые технологии. Опыт показал, что проектирование биржевых компьютерных комплексов - это логически сложная, трудоемкая и длительная по времени работа, требующая высокой квалификации всех участвующих в ее выполнении специалистов. Проектирование таких комплексов традиционно основывается на интуиции, экспертных оценках, дорогостоящих экспериментальных проверках функционирования комплекса и практическом опыте. Кроме того, с ростом числа пользователей биржевой технологии усиливается роль высокой производительности ее функционирования, которая существенно зависит от идеологии проектирования.

Внедрение современных биржевых информационных технологий в практику должно способствовать повышению экономической эффективности работы биржи за счет расширения сферы ее деятельности по регионам страны, ускорения оборачиваемости оборотных средств, вовлечения в биржевой процесс массовых поставщиков, посредников и покупателей, обеспечения возможности активного совершения не только крупномасштабных, но и средне- и мало масштабных сделок в массовом количестве, автоматизации трудоемких и продолжительных рутинных процессов, сбора н анализа заявок от брокерских фирм на покупку-продажу компьютерным способом, проведения автоматизированных торгов (расчет курса, заключение сделок, оформление торговых контрактов и проведение клиринговых расчетов) по единым правилам, обеспечивающим защиту интересов инвестора, равные права всех участников торгов и т.п.

Технологии менеджмента. В условиях рынка новым содержанием наполняются все процедуры производственного менеджмента. Любое производство связано с потоками как внутренней, так и внешней информации. Среди многообразия поступающих сведений менеджеру для принятия решения нужны лишь строго определенные, а все остальные представляют собой информационный шум. Кроме того, большая часть информации возникает не там, где в ней нуждаются, поэтому для успешного решения возникающих задач большое значение приобретает умение преодолеть эту дистанцию. Разрешение проблемы коммуникации оказывает влияние на скорость поступления информации и ее своевременность, что способствует более эффективной работе предприятия. Этот далеко не полный круг проблем выявляет необходимость построения специальной управляющей информационной системы, которая способствует их оптимальному решению. В настоящее время существует два основных подхода к построению таких систем. Это МIS-системы (ManagementInformationSystems), которые к нужному моменту времени в "наиболее удобной форме с учетом общепринятого принципа экономичности предоставляют необходимую для менеджера информацию о прошлом, настоящем и будущем в соответствии с возникшей ситуацией. Второй подход базируется на DSS-системах (DecisionSupportSystems), которые ориентированы на интеллектуальное обеспечение процессов принятия решений и ставят своей целью поддержку принимаемых решений.

Принцип избирательного распределения информации предполагает систематизацию информации в соответствии со следующими требованиями:

· информация должна соответствовать уровню управления, что выражается в ее укрупнении и уплотнении при продвижении от нижнего к верхнему уровню;

· информация должна отвечать характеру менеджмента и соответствовать совокупности целей управления, т.е. для каждого уровня управления предоставляется информация, позволяющая выполнить все функции процесса управления. Например, на стадии анализа используются не только текущие, но и прошлые и прогнозные данные, выполняется сравнение фактических величин с плановыми и выявляются причины возникших отклонении.

Технологии маркетинга. Комплексное изучение информационных потоков маркетинга требует анализа крупных массивов сведений коммерческого и статистического характера. Маркетинговая информационная технология - это совокупность процедур и методов, предназначенных для организации перспективных и текущих маркетинговых исследований.

Налоговые информационные системы. Преобразование налоговой системы вызывает необходимость в модификации, а порой и в кардинальной перестройке соответствующих информационных технологий. Поскольку налоговая система современной России не имеет аналогов, то в решении проблемы информатизации деятельности налоговых служб не приходится рассчитывать на заимствование зарубежной программно-математической продукции. Поэтому, если для реализации официальной налоговой политики и созданы эффективные технологии сбора и обработки необходимой информации, то такая политика, какой бы удачной и перспективной она ни была, обречена на неуспех. Идеологам реформ, желающим путем справедливого распределения налогового бремени стимулировать производство и накопление капитала, необходимо четко представлять возможности НИТ.

Среди главных направлений концепции информатизация налоговой системы целесообразно выделить:

· создание единой комплексной информационно-аналитической системы, предназначенной для обслуживания налоговых служб;

· разработку современной коммуникационной сети, обеспечивающей информационный обмен как внутри системы, так и с внешними объектами;

· подготовку кедров в новой информационной среде.

В качестве основных принципов информатизации налоговых служб предложены:

· комплексность и системность информатизации, ее подчиненность решению задач, стоящих перед налоговой службой в настоящее время и на перспективу;

· активность в обеспечении информационных потребностей пользователей;

· поэтапность и преемственность в проведении информатизации;

· распределенность хранения и обработки информации;

· совместимость общесистемных и специализированньк банков данных по входу, выходу и базовым задачам;

· предоставление пользователю удобного доступа к информации в пределах его компетенции; одноразовый ввод информации и многократное, многоцелевое ее использование; обеспечение требуемой конфиденциальности информации

Публикации по теме